Accéder au contenu principal

Le détail du truc

À propos du truc de Piketty, vous êtes un certain nombre à me réclamer le détail des calculs. Les résultats que je vous propose sont le fruit de simulations que j’ai programmé sous R (ce blog vous sera peut-être utile). Ci-dessous, vous trouverez un exemple de code (simplifié pour une lecture plus facile) qui vous permettra de vérifier mes chiffres et de jouer avec.

Nous allons faire un essai sur une population de N individus (ici 1 millions [1]) pendant T années (ici 25) :

N <- 1e6
T <- 25

On génère une distribution aléatoire des patrimoines initiaux avec la fonction rgamma (la distribution Gamma pour l’asymétrie [2]) et un paramètre de forme de 0,04 (pour encore plus d’asymétrie) et on multiplie le tout par 1 million pour que ça ressemble à des patrimoines plutôt qu’à de la menue monnaie (pure coquetterie) :

Init <- 1e6 * rgamma(N, .04)

À ce stade, vous pouvez vérifier qu’on obtient une distribution des patrimoines nettement asymétrique et que le 1% détient un peu plus de 40% du total.

On créé une matrice vide K de T+1 lignes et N colonnes pour stocker les patrimoines, on colle les patrimoines de départ dans la première ligne et on créé un vecteur r d’espérances de rendement — ici, c’est 2% pour tout le monde.

K <- matrix(NA, T+1, N)
K[1, ] <- Init
r <- rep(.02, N)

Pour chaque année de 2 à T+1, on fait varier le capital de l’année précédente avec une variable (pseudo-) aléatoire qui suit une loi normale (fonction rnorm) avec une espérance r (donc 2%) et un écart-type de 20%.

for(t in 2:(T+1)) {
 K[t, ] <- K[t-1, ] * (1 + rnorm(N, r[t], .2))
}

Nous voilà donc avec une matrice de patrimoines qui, vous en conviendrez, ne donne aucun avantage aux riches.

Puisqu’on en parle, calculons le patrimoine du 1% :

W <- matrix(NA, T+1, 1)
for(t in 1:(T+1)) {
 q <- quantile(K[t, ], seq(0, 1, .01))
 W[t, ] <- mean(K[t, K[t, ] >= q[100]])
}

De là, vous pouvez mesurer la variation annualisée du capital moyen :

as.numeric(100*(mean((K[nrow(K), ])/mean(K[1, ]))^(1/T)-1))
Et celle du capital du 1% :
as.numeric(100*((W[nrow(W), ]/W[1, ] )^(1/T)-1))

Avec ces paramètres, je trouve (environ) 2% pour le commun des mortels et plus de 3% pour le 1% (ça dépend des tirages).

En restreignant le groupe des ultrariches aux 0,1%, je dépasse les 5% (et ainsi de suite).

for(t in 1:(T+1)) {
 q <- quantile(K[t, ], seq(0, 1, .001))
 W[t, ] <- mean(K[t, K[t, ] >= q[1000]])
}

Assez logiquement, l’écart augmente avec l’espérance et l’écart-type et il se réduit plus la distribution initiale est égalitaire.

---
[1] Attention, c’est du lourd ! En fonction de la puissance de votre machine, il est possible que ce soit un peu trop.
[2] Dans mes premiers calculs, j’ai utilisé une distribution uniforme or, il se trouve que l’asymétrie de la distribution initiale a un impact non-négligeable sur les résultats : raison pour laquelle une distribution Gamma me semble plus honnête.

Commentaires

  1. "Nous voilà donc avec une matrice de patrimoines qui, vous en conviendrez, ne donne aucun avantage aux riches."

    Si. Il n'y a en effet aucune raison objective pour qu'il ne soit pas plus difficile de gagner 2% avec un patrimoine de 1000 plutôt qu'avec un patrimoine de 10. La réalité est que, d'un patrimoine de zéro, créer de la valeur constitue une augmentation infinie. Donc une fonction réaliste véritable de rendement aléatoire doit être une fonction qui dépend du patrimoine, tendant vers l'infini pour les patrimoines nuls.

    Par ailleurs on ne voit toujours pas dans cette explications où vont les taxes, à qui elles sont redistribuées ? Une explication informatique ne constitue en soi aucune explication de quoi que ce soit.

    RépondreSupprimer
  2. La "pensée" technicienne va de paire avec l'idéologie du capital - Cf. Ellul.

    Un milliard, et après ?

    Deux ?

    RépondreSupprimer
  3. Bonjour, je trouve vos simulations particulièrement intéressantes et j'aimerais avoir plus de détail sur votre second commentaire. Quel est cet impact non-négligeable du changement de distribution (passage d'une distribution uniforme (société plus "égalitaire") vers une distribution gamma)?

    RépondreSupprimer
    Réponses
    1. Plus la distribution initiale est asymétrique, plus les transition d'un groupe à l'autre son longue.

      Supprimer
  4. Merci. Vous n'auriez pas la meme en format excel? Si vous pouviez m'emailer un fichier a guillaume.bougard@gmail.com pour que je l'etudie et finisse par comprendre, ca serait top. Car le je ne suis pas et comme je suis mauvais en maths/stats/etc, mais pas nullissime en excel, a force d'efforts, je pense que je pourrais finir par piger!
    Merci

    RépondreSupprimer

Enregistrer un commentaire

Posts les plus consultés de ce blog

Brandolini’s law

Over the last few weeks, this picture has been circulating on the Internet. According to RationalWiki, that sentence must be attributed to Alberto Brandolini, an Italian independent software development consultant [1]. I’ve checked with Alberto and, unless someone else claims paternity of this absolutely brilliant statement, it seems that he actually is the original author. Here is what seems to be the very first appearance of what must, from now on, be known as the Brandolini’s law (or, as Alberto suggests, the Bullshit Asymmetry Principle):The bullshit asimmetry: the amount of energy needed to refute bullshit is an order of magnitude bigger than to produce it.— ziobrando (@ziobrando) 11 Janvier 2013To be sure, a number of people have made similar statements. Ironically, it seems that the “a lie can travel halfway around the world while the truth is still putting on its shoes” quote isn’t from Mark Twain but a slightly modified version of Charles Spurgeon’s “a lie will go round the w…

Les comités Théodule

Le Comité Stratégique au Calcul Intensif, le Haut Conseil de l’Éducation Artistique et Culturelle, l’Observatoire des Jeux, la Grande Commission Nautique, la Conférence de la Ruralité, le Groupe Interministériel des Normes… L’imagination de nos dirigeants en matière de comités Théodule ne semble connaitre aucune limite.Grâce à quatre courageuses et courageux (un grand merci à Delphine, Ugo, Clément et Caroline qui nous a fourni un fichier de contrôle très utile), nous disposons maintenant d’un fichier exploitable conçu sur la base des données trouvées en annexe du PLF 2016 (le « jaune ») pour les années 2012, 2013 et 2014 (les coûts sont donnés en milliers d'euros).Au total, nous avons donc 504 comités, conseils, observatoires, commissions, conférences et autres groupes interministériels — ci-après « instances ». Certaines ont disparu depuis, d’autres sont de création très récente mais ça donne un ordre de grandeur. Ces instances occupent, plus ou moins, un maximum de 19 890 memb…

Logement social de luxe

Ian Brossat, adjoint (PCF) à la maire de Paris en charge du logement depuis avril 2014 annonçait ce 27 février qu’il s’apprêtait à inaugurer de nouveaux logements sociaux situés avenue du Coq, dans le 9ème arrondissement de Paris.L’élu communiste ayant eu l’excellente idée de joindre quelques photos, ce tweet a piqué ma curiosité : je me suis toujours demandé à quoi pouvait ressembler les logements sociaux de la capitale.Je vous laisse découvrir ça :Je ne sais pas ce que vous en pensez mais, de mon point de vue, c’est plutôt pas trop mal. On est quand même dans un bel immeuble haussmannien en pierre de taille, les parties communes relèvent clairement de la prestation haut-de-gamme et les logements eux-mêmes, manifestement refaits à neuf, n’ont pas grand-chose à voir avec l’idée que je me faisais d’un logement social.Clairement, je crois que cette série de photo aurait été tout à fait à sa place dans la vitrine d’une agence immobilière de luxe.Mais ça n’est pas fini. Il se trouve que l…