Accéder au contenu principal

Le détail du truc

À propos du truc de Piketty, vous êtes un certain nombre à me réclamer le détail des calculs. Les résultats que je vous propose sont le fruit de simulations que j’ai programmé sous R (ce blog vous sera peut-être utile). Ci-dessous, vous trouverez un exemple de code (simplifié pour une lecture plus facile) qui vous permettra de vérifier mes chiffres et de jouer avec.

Nous allons faire un essai sur une population de N individus (ici 1 millions [1]) pendant T années (ici 25) :

N <- 1e6
T <- 25

On génère une distribution aléatoire des patrimoines initiaux avec la fonction rgamma (la distribution Gamma pour l’asymétrie [2]) et un paramètre de forme de 0,04 (pour encore plus d’asymétrie) et on multiplie le tout par 1 million pour que ça ressemble à des patrimoines plutôt qu’à de la menue monnaie (pure coquetterie) :

Init <- 1e6 * rgamma(N, .04)

À ce stade, vous pouvez vérifier qu’on obtient une distribution des patrimoines nettement asymétrique et que le 1% détient un peu plus de 40% du total.

On créé une matrice vide K de T+1 lignes et N colonnes pour stocker les patrimoines, on colle les patrimoines de départ dans la première ligne et on créé un vecteur r d’espérances de rendement — ici, c’est 2% pour tout le monde.

K <- matrix(NA, T+1, N)
K[1, ] <- Init
r <- rep(.02, N)

Pour chaque année de 2 à T+1, on fait varier le capital de l’année précédente avec une variable (pseudo-) aléatoire qui suit une loi normale (fonction rnorm) avec une espérance r (donc 2%) et un écart-type de 20%.

for(t in 2:(T+1)) {
 K[t, ] <- K[t-1, ] * (1 + rnorm(N, r[t], .2))
}

Nous voilà donc avec une matrice de patrimoines qui, vous en conviendrez, ne donne aucun avantage aux riches.

Puisqu’on en parle, calculons le patrimoine du 1% :

W <- matrix(NA, T+1, 1)
for(t in 1:(T+1)) {
 q <- quantile(K[t, ], seq(0, 1, .01))
 W[t, ] <- mean(K[t, K[t, ] >= q[100]])
}

De là, vous pouvez mesurer la variation annualisée du capital moyen :

as.numeric(100*(mean((K[nrow(K), ])/mean(K[1, ]))^(1/T)-1))
Et celle du capital du 1% :
as.numeric(100*((W[nrow(W), ]/W[1, ] )^(1/T)-1))

Avec ces paramètres, je trouve (environ) 2% pour le commun des mortels et plus de 3% pour le 1% (ça dépend des tirages).

En restreignant le groupe des ultrariches aux 0,1%, je dépasse les 5% (et ainsi de suite).

for(t in 1:(T+1)) {
 q <- quantile(K[t, ], seq(0, 1, .001))
 W[t, ] <- mean(K[t, K[t, ] >= q[1000]])
}

Assez logiquement, l’écart augmente avec l’espérance et l’écart-type et il se réduit plus la distribution initiale est égalitaire.

---
[1] Attention, c’est du lourd ! En fonction de la puissance de votre machine, il est possible que ce soit un peu trop.
[2] Dans mes premiers calculs, j’ai utilisé une distribution uniforme or, il se trouve que l’asymétrie de la distribution initiale a un impact non-négligeable sur les résultats : raison pour laquelle une distribution Gamma me semble plus honnête.

Commentaires

  1. "Nous voilà donc avec une matrice de patrimoines qui, vous en conviendrez, ne donne aucun avantage aux riches."

    Si. Il n'y a en effet aucune raison objective pour qu'il ne soit pas plus difficile de gagner 2% avec un patrimoine de 1000 plutôt qu'avec un patrimoine de 10. La réalité est que, d'un patrimoine de zéro, créer de la valeur constitue une augmentation infinie. Donc une fonction réaliste véritable de rendement aléatoire doit être une fonction qui dépend du patrimoine, tendant vers l'infini pour les patrimoines nuls.

    Par ailleurs on ne voit toujours pas dans cette explications où vont les taxes, à qui elles sont redistribuées ? Une explication informatique ne constitue en soi aucune explication de quoi que ce soit.

    RépondreSupprimer
  2. La "pensée" technicienne va de paire avec l'idéologie du capital - Cf. Ellul.

    Un milliard, et après ?

    Deux ?

    RépondreSupprimer
  3. Bonjour, je trouve vos simulations particulièrement intéressantes et j'aimerais avoir plus de détail sur votre second commentaire. Quel est cet impact non-négligeable du changement de distribution (passage d'une distribution uniforme (société plus "égalitaire") vers une distribution gamma)?

    RépondreSupprimer
    Réponses
    1. Plus la distribution initiale est asymétrique, plus les transition d'un groupe à l'autre son longue.

      Supprimer
  4. Merci. Vous n'auriez pas la meme en format excel? Si vous pouviez m'emailer un fichier a guillaume.bougard@gmail.com pour que je l'etudie et finisse par comprendre, ca serait top. Car le je ne suis pas et comme je suis mauvais en maths/stats/etc, mais pas nullissime en excel, a force d'efforts, je pense que je pourrais finir par piger!
    Merci

    RépondreSupprimer

Enregistrer un commentaire

Posts les plus consultés de ce blog

Brandolini’s law

Over the last few weeks, this picture has been circulating on the Internet. According to RationalWiki, that sentence must be attributed to Alberto Brandolini, an Italian independent software development consultant [1]. I’ve checked with Alberto and, unless someone else claims paternity of this absolutely brilliant statement, it seems that he actually is the original author. Here is what seems to be the very first appearance of what must, from now on, be known as the Brandolini’s law (or, as Alberto suggests, the Bullshit Asymmetry Principle):The bullshit asimmetry: the amount of energy needed to refute bullshit is an order of magnitude bigger than to produce it.— ziobrando (@ziobrando) 11 Janvier 2013To be sure, a number of people have made similar statements. Ironically, it seems that the “a lie can travel halfway around the world while the truth is still putting on its shoes” quote isn’t from Mark Twain but a slightly modified version of Charles Spurgeon’s “a lie will go round the w…

Un garçon qui n’a jamais eu de métier

Jean-Luc Mélenchon fait ses premières armes en politique à Lons-le-Saunier, en mai 1968. À cette époque il n’est que lycéen — en première littéraire — mais c’est lui, racontent ses anciens camarades de classe, qui va importer les évènements parisiens dans son Jura d’adoption. C’est lors de cette première expérience politique qu’il va réaliser son indiscutable talent d’orateur et se familiariser avec la pensée d’extrême gauche et notamment Karl Marx qui devient son livre de chevet en terminale. Il passe son bac en 1969 et s’inscrit à la faculté des lettres de l’université de Besançon pour y étudier la philosophie.Sitôt inscrit, le jeune Mélenchon se rapproche de l’UNEF et déserte les amphis pour se consacrer au militantisme. Il parviendra quand même à obtenir sa licence en 1972 mais ne poussera pas ses études plus loin : la même année, il rentre formellement en politique en rejoignant l’Organisation Communiste Internationaliste (OCI), une organisation trotskyste de tendance lambertiste…

Le salaire minimum à 15 dollars de Seattle

En général, la (fonction de densité de la) distribution des salaires ressemble à quelque chose comme ça : C’est-à-dire que relativement peu de gens touchent des salaires très bas (à gauche de la distribution), la plupart perçoivent un salaire proche du salaire médian (au milieu) et, plus on monte dans l’échelle des rémunérations (vers la droite), plus ça devient rare. Sur un graphique de ce type, le P.-D.G. d'une société du CAC 40 ou un joueur international de football se promènent à quelques dizaines de centimètres à droite de votre écran mais ces cas sont si exceptionnels que le trait bleu est invisible à l’œil nu.Le point MinW indique le niveau du salaire minimum légal. À gauche de ce point, en rouge, vous trouvez toutes les personnes dont le travail vaut moins que le salaire minimum. Typiquement, ce sont des gens peu qualifiés, peu expérimentés et même souvent les deux. C’est-à-dire qu’étant donné le niveau du salaire minimum, ces gens-là sont tout simplement inemployables. C&#…